Joint Transmission Map Estimation and Dehazing using Deep Networks
نویسندگان
چکیده
منابع مشابه
Joint Transmission Map Estimation and Dehazing using Deep Networks
Single image haze removal is an extremely challenging problem due to its inherent ill-posed nature. Several prior-based and learning-based methods have been proposed in the literature to solve this problem and they have achieved superior results. However, most of the existing methods assume constant atmospheric light model and tend to follow a twostep procedure involving prior-based methods for...
متن کاملFast Image Dehazing Using Guided Joint Bilateral Filter
In this paper, we propose a new fast dehazing method from single image based on filtering. The basic idea is to compute an accurate atmosphere veil that is not only smoother, but also respect with depth information of the underlying image. We firstly obtain an initial atmosphere scattering light through median filtering, then refine it by guided joint bilateral filtering to generate a new atmos...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملFast Image Dehazing Using Guided Joint Bilateral Filter
In this paper, we propose a new fast dehazing method from single image based on filtering. The basic idea is to compute an accurate atmosphere veil that is not only smoother, but also respect with depth information of the underlying image. We firstly obtain an initial atmosphere scattering light through median filtering, then refine it by guided joint bilateral filtering to generate a new atmos...
متن کاملFeature joint-state posterior estimation in factorial speech processing models using deep neural networks
This paper proposes a new method for calculating joint-state posteriors of mixed-audio features using deep neural networks to be used in factorial speech processing models. The joint-state posterior information is required in factorial models to perform joint-decoding. The novelty of this work is its architecture which enables the network to infer joint-state posteriors from the pairs of state ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology
سال: 2019
ISSN: 1051-8215,1558-2205
DOI: 10.1109/tcsvt.2019.2912145